M1. (a) (i) use of $P V / T=$ constant

$$
\begin{aligned}
& \frac{P_{D} V_{D} T_{A}}{P_{A} V_{A}} \\
& =\frac{2.5 \times 1.0 \times 300}{1.5 \times 1.0} \quad \checkmark=500 \mathrm{~K}
\end{aligned}
$$

(ii) $Q=\Delta U+W$
$\Delta U=0 \quad{ }^{\prime}$

$$
Q=W=173 \mathrm{~J}
$$

(b) (i) work out $=173-104=69 \mathrm{~J} \mathbf{V}^{\prime}$
(ii) efficiency $=69 / 173=0.40$ or 40%

$$
\begin{aligned}
\eta_{\max } & =\left(T_{\mathrm{H}}-T_{\mathrm{c}}\right) / T_{\mathrm{H}} \\
& =(500-300) / 500 \\
& =0.39 \text { or } 40 \% \mathbf{V}^{\prime}
\end{aligned}
$$

(c)

rectangle in correct position \checkmark
letters correct place $\boldsymbol{~}^{\prime}$ (arrows optional)
Page 2
(d) - isothermal process impossible unless very slow or via perfect conductor

- engine would have to stop for constant volume processes to take place
- regenerator would lose heat to surroundings (unless perfectly insulated)
- long time needed for heat to transfer from regenerator to working fluid
- regenerator would need to be very large/large surface area for heat transfer to take place quickly
accept other sensible suggestions
do not accept 'heat loss to surroundings' or 'friction'
any two

M2. (a) $\quad P_{\text {in }}(=$ calorific value \times fuel flow rate $)$

$$
=\frac{36 \times 10^{6} \times 9.6}{3600} \text { (1) } \square \mathbf{(1) ~ (f o r ~ c o n v e r s i o n ~ t o ~} 3600 \mathrm{~s} \text {) (= } 96 \mathrm{~kW} \text {) }
$$

(b) $\eta\left(=\frac{T_{\mathrm{H}}-T_{\mathrm{C}}}{T_{\mathrm{H}}}\right)=\frac{1400-360}{1400}=0.74$ or 74% (1)
(c) $\quad \eta$ claimed in (a) $=\frac{\frac{80(\mathrm{~kW})}{100(\mathrm{~kW})}}{}=0.80$ or $80 \%(1)$
[or $\frac{80(\mathrm{~kW})}{96(\mathrm{~kW})}=0.83$ or 83%]
which is $>74 \%$, so claim 1 is unjustified (1)

Page 3

heat rejected from engine $=P_{\text {in }}-P_{\text {out }}$ (1)
real mechanical $P_{\text {out }}$ must be $<0.74 \times 100$ i.e. $<74 \mathrm{~kW}$ (1)
so claim 2 is justified as $P_{\text {in }}-P_{\text {out }}>20 \mathrm{~kW}$ (1)
[alternative for (c):
maximum Pout $=71 \mathrm{~kW}(0.74 \times 96)$ or $74 \mathrm{~kW}(0.74 \times 100)(1)$
which is $<80 \mathrm{~kW}$, so claim 1 is unjustified (1)
heat rejected from engine is $25 \mathrm{~kW}(96-71)$ or $26 \mathrm{~kW}(100-74)(1)$
actual wasted power must be $>25 \mathrm{~kW}$ (1)
claim 2 is justified as $25 \mathrm{~kW}>20 \mathrm{~kW}$ (1)]
QWC 1
[7]

M3. (a) $p_{1} V_{1}=7.8 \times 10^{5} \times 1.6 \times 10^{4}=125\left(\mathrm{~Pa} \mathrm{~m}^{3}\right)$
$p_{2} V_{2}=1.9 \times 10^{5} \times 6.6 \times 10^{4}=125\left(\mathrm{~Pa} \mathrm{~m}^{3}\right)(1)$ suitably correct comment (1)
(b) (i) adiabatic \rightarrow no heat enters (or leaves) gas, rapid expansion so no time for heat transfer (1)
(ii) $\quad\left(p_{1} V_{1^{\prime}}=p_{2} V_{2^{\prime}}\right)$ gives $V_{2=}\left(\frac{p_{1} V_{1}^{y}}{p_{2}}\right)_{1 / y}$

$$
=\left(\frac{1.9 \times 10^{5} \times\left(6.6 \times 10^{-4}\right)^{1.4}}{9.8 \times 10^{4}}\right)^{1 / 1.4} \quad(1)=1.1(0) \times 10^{-3} \mathrm{~m}^{3}(1)
$$

M4. \quad (i) $V=80 \times 10^{-3} \times 1.77 \times 10^{-4}(1) \quad\left(=1.416 \times 10^{-5}\right)$

$$
n\left(=\frac{p V}{R T}\right)=\frac{1.03 \times 10^{5} \times 1.416 \times 10^{-5}}{8.31 \times 291}=6.0(3) \times 10^{-4}(\mathrm{moles})(1)
$$

(allow C.E. for value of V)
(ii) $P_{2}=P_{1}\left(\frac{V_{1}}{V_{2}}\right)^{\gamma}$

$$
\begin{equation*}
=1.03 \times 10^{5} \times\left(\frac{80}{2.0}\right)^{1.4}=1.80 \times 10^{7} \mathrm{~Pa}(1) \tag{1}
\end{equation*}
$$

(iii) $T_{2}=\frac{p_{2} V_{2}}{n R}$ or $T_{2}=\frac{p_{2} V_{2} T_{1}}{P_{1} V_{1}}$

$$
\begin{equation*}
T_{2}=\frac{1.80 \times 10^{7} \times 2.0 \times 10^{-3} \times 1.77 \times 10^{-4}}{6.03 \times 10^{-4} \times 8.31}=1.3 \times 10^{3} \mathrm{~K}(1) \quad\left(1.27 \times 10^{3} \mathrm{~K}\right) \tag{1}
\end{equation*}
$$

(allow C.E. for value of p_{2} or n)

M5. (a) (use of $p V^{v}=$ constant gives)
$1.01 \times 10^{5} \times\left(4.25 \times 10^{-4}\right)^{1.4}=1.70 \times 10^{5} \times V^{1.4} \quad(1)$ V calculated correctly $\left(=2.93 \times 10^{-4}\right)$ or substitution to show equal $p \vee$ (1)
(b) $\frac{p_{1} V_{1}}{T_{1}}=\frac{p_{2} V_{2}}{T_{2}}$

$$
\begin{align*}
& T_{1}=273+23=296(\mathrm{~K}) \quad(1) \tag{1}\\
& T_{2}=\frac{1.7 \times 10^{5} \times 2.93 \times 10^{-4} 296}{1.01 \times 10^{5} \times 4.25 \times 10^{-4}}=343 \mathrm{~K} \tag{1}
\end{align*}
$$

(c) slow compression is isothermal (temperature does not increase) (1) greater change in volume needed to rise to same final pressure (or correct $\mathrm{p} V$ sketches showing adiabatic and isothermal processes) hence less (1) (1)

M6.(a) $\Delta Q=0$ (1)
as heat has no time to transfer (1)
$\Delta U=\Delta W$ (1)
U related to T (1)
(b) (i) $p_{1} V_{1}^{\gamma}=p_{2} V_{2}^{\gamma}$ (1)

$$
\begin{align*}
& p_{2}=100 \times 10^{3} \times\left(\frac{1}{1.7}\right)^{1.4} \tag{1}\\
& p_{2}=4.8 \times 10^{4} \mathrm{~Pa} \text { (1) } \\
& \frac{p_{1} V_{1}}{T_{1}}=\frac{p_{2} V_{2}}{T_{2}} \tag{1}\\
& \text { (ii) }
\end{align*}
$$

$$
\mathrm{T}_{2}=253 \text { [or 255] K (1) }
$$

(c) higher (1)
satisfactory reasoning (1)
possible answers:
heat transfer so temperature fall is less
final temperature is higher than adiabatic so greater pressure
falling isothermal curve is less steep than adiabiatic labelled sketch showing two correct curves

